Don't Yank My Chain Auditable NF Service Chaining

Guyue Liu, Hugo Sadok, Anne Kohlbrenner, Bryan Parno, Vyas Sekar, Justine Sherry

Carnegie Mellon University

Network Function Virtualization (NFV)

Network Function Virtualization (NFV)

Network Function Virtualization (NFV)

Benefits: (1) Cost (2) Elasticity (3) Richer Policies

Policy Graph

NFs are mandated by legal and policy requirements

FERPA

*There is also ISO 270001, which is an equivalent international standard

*There is also ISO 270001, which is an equivalent international standard

Periodically test that the infrastructure is running properly

*There is also ISO 270001, which is an equivalent international standard

Periodically test that the infrastructure is running properly

System must provide logs of anomalies and past behavior

Independent auditors must verify that security mechanisms are in place and running correctly

*There is also ISO 270001, which is an equivalent international standard

Periodically test that the infrastructure is running properly

System must provide logs of anomalies and past behavior

Traditional Network

NF 1

Traditional Network

Traditional Network

NF 2

Traditional Network

NF 1

NF 3

Host 2

Traditional Network

Traditional Network

NF 1

NF 2

Traditional Network

NF 1

NF 3

Host 2

NF 2

Traditional Network

NF 1

NF 3

Host 2

Auditors can rely on the network topology to ensure that the correct NF chain is being used

D

Auditors can inspect and approve HW boxes

Auditors can trust logs captured by the HW boxes

Auditors can rely on the network topology to ensure that the correct NF chain is being used

D

Auditors can inspect and approve HW boxes

Auditors can trust logs captured by the HW boxes

Auditors can rely on the network topology to ensure that the correct NF chain is being used

1

Auditors can inspect and approve HW boxes

Auditors can trust logs captured by the HW boxes

(1) NF chains are dynamic

Auditors can rely on the network topology to ensure that the correct NF chain is being used

1

Auditors can inspect and approve HW boxes

Auditors can trust logs captured by the HW boxes

(1) NF chains are dynamic

Software NFs can be modified by an attacker

Auditors can rely on the network topology to ensure that the correct NF chain is being used

1

Auditors can inspect and approve HW boxes

Auditors can trust logs captured by the HW boxes

NF chains are dynamic

Software NFs can be modified by an attacker

These limitations are not fundamental to NFV

These limitations are not fundamental to NFV

With AuditBox for NFV, auditors have even <u>stronger</u> auditing guarantees than traditional NF deployments

AuditBox

Provides auditing capabilities to NFV deployments

AuditBox

Provides auditing capabilities to NFV deployments

- NF functionality cannot be modified/manipulated
- 2
- 3
- Good performance

Traffic is steered between NFs according to the administrator's policy

Provide logs that attest that the correct policy is being followed

AuditBox

Key Techniques:

- **Secure Enclaves**
- $(\mathbf{2})$ **NF Hop-by-Hop Updated Attestation**
- 3 Secret Logging
- **Efficient Crypto Mechanisms**

Logical view of an NF chain

Logical view of an NF chain

Logical view of an NF chain

Need to attest that all components in the path are correct

Run NFs inside secure enclaves (e.g., Intel SGX)

Auditors have guarantees that the audited NF software is running

- Auditors have guarantees that the audited NF software is running Remaining untrusted functionality is responsible for packet forwarding

Examples: EPIC [USENIX '20], OPT [SIGCOMM '14], ICING [CoNEXT '11]

Examples: EPIC [USENIX '20], OPT [SIGCOMM '14], ICING [CoNEXT '11]

VRP Assumptions:

NFV Needs:

Examples: EPIC [USENIX '20], OPT [SIGCOMM '14], ICING [CoNEXT '11]

VRP Assumptions:

Immutable Packets

NFV Needs:

Mutable Packets

Examples: EPIC [USENIX '20], OPT [SIGCOMM '14], ICING [CoNEXT '11]

VRP Assumptions:

Immutable Packets

Pre-known Paths

NFV Needs:

Mutable Packets

Dynamic Paths

Examples: EPIC [USENIX '20], OPT [SIGCOMM '14], ICING [CoNEXT '11]

VRP Assumptions:

Immutable Packets

NFV Needs:

Mutable Packets

Pre-known Paths

Stateless Processing Nodes

Dynamic Paths

Stateful Processing Nodes

A shim in every enclave mediates all incoming and outgoing packets

- \bullet
- Attestation happens between pairs of shims

A shim in every enclave mediates all incoming and outgoing packets

RC NF	DST NF	Tag
-------	--------	-----

RC NF	DST NF	Tag

Tag = GMAC(key, Packet | Packet ID | SRC NF | DST NF)

*AuditBox also supports flow-level correctness which detects packet duplication, reordering and drops (refer to paper for details)

Tag = GMAC(key, Packet | Packet ID | SRC NF | DST NF)

Control Plane

Data Plane

Control Plane

Data Plane

Control Plane

Data Plane

Runtime Correctness

1) Secure Enclaves

2 Hop-by-hop Verification Protocol

Administrator/

Runtime Correctness (1) Secure Enclaves

(2) Hop-by-hop Verification Protocol

Administrator/

Offline Auditability ③ Secret Logging

Runtime Correctness (1) Secure Enclaves

(2) Hop-by-hop Verification Protocol

- Asymmetric key at every hop
- 2 GMACs at every hop

Efficient Crypto Mechanisms 4

One symmetric key for all NFs in the same policy pipelet

Updatable GMAC [1]: Reuse first GMAC when computing the second GMAC

GMAC for incoming packet

Headers	Payload	Trailer		

GMAC for outgoing packet

[1] D. McGrew. Efficient authentication of large, dynamic data sets using Galois/counter mode (GCM). In Security in Storage Workshop. IEEE, 2005.

Blocks that changed

Evaluation

Proofs: We provide security proofs that AuditBox can achieve both runtime correctness and offline auditability

2 Functionality Evaluation: A policy violations

Berformance Evaluation: A NFs with low overhead

Functionality Evaluation: AuditBox correctly detects a broad class of

Performance Evaluation: AuditBox enables auditing for unmodified

Evaluation: NF Chain Goodput

Achieves 18 Gbps for a simple NF chain

Summary

AuditBox is the first NFV auditing system. It leverages trusted execution environments to provide:

- Runtime correctness
- Offline auditability
- While still achieving good performance

Guyue Liu, Hugo Sadok, Anne Kohlbrenner,* Bryan Parno, Vyas Sekar, Justine Sherry Carnegie Mellon University **Princeton University*

Contact: sadok@cmu.edu