
A Case for Spraying Packets in
Software Middleboxes

Hugo Sadok, Miguel Elias M. Campista, Luís Henrique M. K. Costa
GTA/PEE/COPPE – Universidade Federal do Rio de Janeiro

{sadok,miguel,luish}@gta.ufrj.br

ABSTRACT
The standard approach adopted by software middleboxes to
use multiple cores has long been to direct packets to cores
at flow granularity. This, however, has significant shortcom-
ings. First, it is inefficient, since it cannot use all cores when
there is a small number of concurrent flows—which happens
frequently. Second, asymmetry in flow distribution causes
unfairness even with a larger number of flows. Yet, the cur-
rent trend of higher-speed links and core-richer CPUs only
aggravates these problems. In this paper, we propose a nat-
ural alternative: that middleboxes should direct packets to
cores at a finer granularity. Our system, Sprayer, solves the
fundamental problems of per-flow solutions and addresses
the new challenges of handling shared flow state that come
with packet spraying. Sprayer builds on the observation that
most middleboxes only update flow state when connections
start or finish; ensuring that all control packets from the same
TCP connection are processed in the same core. We show
that, when compared to the per-flow alternative, Sprayer sig-
nificantly improves fairness and seamlessly uses the entire
capacity, even when there is a single flow.

1 INTRODUCTION
Today middleboxes are a primary component of both enter-
prise and ISP networks [38, 40]. Middleboxes allow network
operators to deploy a wide range of network functions (NFs),
such as NATs, firewalls, and load balancers. Yet, the cost
and lack of flexibility of purpose-built hardware middleboxes
are pushing operators to software running on commodity
servers [14]. Moving to software, however, does not come
for free. Software middleboxes have significant overhead and
often need to use multiple CPU cores [23, 30, 32, 35, 39, 41,
42]—or even multiple hosts [18, 28, 35, 37, 45]—to achieve
line rates. Moreover, the rapid increase of network link capac-
ities only exacerbates this need.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotNets-XVII, November 15–16, 2018, Redmond, WA, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to
ACM.
ACM ISBN 978-1-4503-6120-0/18/11. . . $15.00
https://doi.org/10.1145/3286062.3286081

When using multiple cores, middleboxes must determine
which core to direct packets to. Today, this is often done using
Receive-Side Scaling (RSS). RSS is a feature of multi-queue
NICs that directs packets to different cores using a hash of the
five-tuple. Doing so, all packets from the same flow end up
in the same core. The reasons for coupling packets from the
same flow are twofold. First, processing same-flow packets
sequentially avoids packet reordering. Second, having same-
flow packets processed in the same core simplifies flow state
handling. RSS, however, has significant shortcomings. It is
inefficient, since it cannot use all the available cores when
the number of concurrent flows is small—which happens fre-
quently in real workloads (§2). Moreover, since RSS directs
flows to cores using a hash of the five-tuple, hash collisions
cause asymmetry in flow distribution. This results in unfair-
ness even with a larger number of flows (§5).

Interestingly, the same problem appears in a different con-
text. Datacenter networks use per-flow Equal Cost Multi-Path
(ECMP) to direct packets to different paths. Like RSS, ECMP
directs all packets from the same flow to the same path and, as
such, has similar shortcomings [9]. The problems with ECMP
have led many [11, 13, 15, 21, 47] to consider load-balancing
packets to paths ignoring their flows. This approach, known as
packet spraying, introduces reordering but, because datacen-
ter networks have paths with low and very similar latencies,
the amount of reordering is not enough to significantly harm
TCP [15]. In face of these similarities, in this work we ask
the following question: can software middleboxes also benefit
from load balancing packets at a finer granularity?

To answer this question we introduce Sprayer, a frame-
work for developing network functions using packet spray-
ing. Sprayer cleverly uses features of commodity NICs to
spray packets to cores without software intervention. More-
over, it equips NFs with abstractions for handling flow states.
Sprayer’s flow state abstractions build on the observation that
most NFs only update flow state when connections start or
finish (§3.2). Therefore, by directing packets at the beginning
or end of the same TCP connection (connection packets) to
the same core, we ensure that only this core will need to mod-
ify the state for this connection. This avoids the introduction
of synchronization primitives that would impact performance.

We conduct preliminary experiments to understand how
effective Sprayer is in comparison to RSS. Similar to the da-
tacenter observations, we find that the low difference in delay
between packets processed in different cores is not enough
to significantly impair TCP performance. Moreover, we ob-
serve that the overall TCP throughput remains consistent for

https://doi.org/10.1145/3286062.3286081

104 107 1010

Flow Size (Bytes)

0

0.25

0.5

0.75

1.0
C

D
F Flows

Bytes

Figure 1: Distribution of
number of flows with a
given size and distribution
of bytes across different
flow sizes.

0 5 10 15

Concurrent Flows

0.0

0.25

0.5

0.75

1.0

C
D

F

All flows
> 10 MB

Figure 2: Number of con-
current flows in every
150 µs window, consider-
ing all flows or only large
flows.

both low and high number of concurrent flows. Therefore, for
the typical number of concurrent flows found in real work-
loads, Sprayer greatly improves TCP throughput. Further, we
show that Sprayer also improves fairness, even with a higher
number of flows.

2 MOTIVATION
To motivate the need for packet spraying in middleboxes, we
begin with a quick analysis of real packet traces. We want to
understand how diverse is the traffic at the small time frame
that packets stay inside a middlebox.

We use a 48 hour trace of a highly-utilized 1 Gbps backbone
link [7] captured in May 2018. The trace does not contain
payloads, we determine packet sizes using the “Total Length”
field of the IP header. Figure 1 shows the CDF of TCP flow
sizes as well as the distribution of bytes across these flows.
There are few large flows, but they are responsible for the ma-
jority of the traffic. Flows with more than 10 MB account for
more than 75% of the traffic. This confirms the long observed
“elephants and mice” phenomenon of Internet traffic [19].

The effectiveness of RSS on middleboxes depends on the
number of concurrent flows. If this number is large enough,
RSS uses all cores with high probability. Although the number
of ongoing TCP connections can be very large,1 if we consider
only the number of flows active in the small amount of time
it takes for a packet to be processed by a middlebox, this
assumption no longer holds.

To measure concurrent flows, we use a 150 µs window.
This window is 10 times the largest 99th percentile RTT we
found in our experiments (§5). This RTT is also comparable
to the one measured by previous work [20, 36, 41]. Since the
actual time a packet takes to be processed by the middlebox
is certainly less than the RTT, the number of concurrent flows
we report is a strict upper bound.

Figure 2 presents the CDF of the number of concurrent
TCP flows. The median number of concurrent flows is only 4
and the 99th percentile is 14. The level of concurrency among
large flows is even smaller. If we only consider flows with
more than 10 MB, the median number of concurrent flows
is 1 and the 99th percentile is 6. Yet, as we have seen, these

1The number of ongoing TCP connections can exceed 1 million in this trace!

core 0

core 1

core 2

core nRS
S

/
Fl

ow
 D

ire
ct

orNIC
(Rx)

NIC
(Tx)

Figure 3: Hardware packet classification. The NIC is re-
sponsible for directing packets to cores.

flows account for the majority of the traffic, which indicates a
poor degree of statistical multiplexing.

Since these results are for a backbone link, we expect them
to include more concurrent flows than the traffic of an en-
terprise network. Indeed, we repeated the same analysis on
traffic at our lab’s Internet gateway and on the M57 traces [2]
(used by some previous work on middleboxes [28, 39]) and
found even fewer concurrent flows.

3 DESIGN
We now turn to the design of Sprayer. First we describe the
challenges of processing sprayed packets. Then we present an
architecture that deals with these challenges. Finally, we delve
into a simple programming model used by NFs implemented
on top of Sprayer.

There are two main challenges in the design of Sprayer:
spraying packets to different cores and handling flow states.

3.1 How to spray packets?
When processing packets in a multi-core system, one has to
choose between software and hardware packet classification.
As depicted in Figure 3, the hardware technique consists of
using multi-queue NICs, which are common today, to classify
and direct packets to each core. The software alternative is
to direct all packets to a single core and let software choose
the destination cores. Using hardware classification offers
better performance and is usually the preferred method [38,
39]. Since current NICs do not offer support for spraying
packets to cores, one might be tempted to turn to software-
based classification. Fortunately, we discovered a way of
spraying packets using Flow Director, a functionality found in
many commodity NICs [24, 25]. We delay the implementation
details to §4. For now, it is sufficient to know that the NIC
randomly delivers TCP packets to cores.

3.2 How to handle flow state?
The traditional approach of sending all the packets from the
same connection to the same core has the benefit that flow
states are partitionable and each core only has to keep state
for its flows. Partitionable state is often desirable as it avoids
the penalty of enforcing cache coherence, as well as the use
of synchronization primitives (e.g., locks). When we blindly
spray packets from the same flow across all cores, we lose this
property. What we observe, however, is that we get similar
benefits if we only provide writing partition. As long as we

Table 1: Example of state scope and access pattern of
some popular stateful NFs. Most NFs only update flow
states when connections start or finish.

NF State Scope Access Pattern
packet flow

NAT,
IPv4 to IPv6

Flow map Per-flow R RW
Pool of IPs/ports Global - RW

Firewall Connection context Per-flow R RW

Load
Balancer

Flow-server map Per-flow R RW
Pool of servers Global - RW

Statistics Global RW -
Traffic
Monitor

Connection context Per-flow - RW
Statistics Global RW -

Redundancy
Elimination

Packet cache Global RW -

DPI Automata Per-flow RW -

guarantee that the state of a given flow is only modified by a
single core, we avoid the use of locks and significantly reduce
cache invalidations.

In order to provide writing partition, we depart from the
observation that many NFs only change flow state when TCP
connections start or finish. Table 1 shows the scope (per-flow
or global state) and access pattern (read or write at every
packet or flow) for some popular stateful NFs. Deep Packet
Inspection (DPI) is the only NF in the list that needs to update
flow state for every packet. Of course, some NFs also need to
update global state for every packet. Although this issue also
has the potential to affect performance, it is not specific to
Sprayer, traditional approaches [18, 37, 39, 45] must also deal
with shared global state. Moreover—at least in the case of
statistics—looser consistency is often tolerable, which helps
to reduce the problem [45].

We make a distinction between connection packets and
regular packets. Connection packets are those that have po-
tential to modify TCP state (packets flagged with SYN, FIN,
or RST), while regular packets are all the others. Moreover,
we say that every flow has a designated core. We determine
the designated core for a given flow calculating a hash of its
five-tuple. By default, we use a hash function that maps up-
stream and downstream flows from the same TCP connection
to the same designated core. Sprayer enforces writing parti-
tion by keeping flow states in their designated cores while
making sure that all connection packets from a given flow are
processed in their designated core.

3.3 Architecture
Figure 4 shows an overview of Sprayer’s architecture. The
key idea is to separate the NF code that handles connection
packets from the code that handles regular ones. All cores run
identical threads and have their own flow tables. Moreover,
cores can only write to their local flow tables, but can read
from any. This ensures writing partition.

After the NIC delivers a packet, Sprayer checks whether
it is a connection packet. It then processes regular packets in
the core they arrive but redirects connection packets to ring

ring

NIC

NF
regular_packets

Flow Table

SYN/FIN/RST ?

NF
connection_packets

Core Other Cores

Core picker foreignlocal

Y N

Flow Table

R
RW RW

Data
State

NFNF

ring

foreign
packets

Figure 4: Overview of Sprayer from the perspective of a
single core. Regular packets are processed locally, while
connection packets may be transferred to other cores.

buffers in their designated cores—unless the designated core
is the same as the current one (core picker in Figure 4). Note
that Sprayer does not transfer the entire packet to other cores,
it transfers packet descriptors. Also note that if NICs were
able to deliver connection packets to cores based on their
five-tuples, while spraying the others, Sprayer would not need
to transfer those packets.2

For performance reasons, we use batches of packets when-
ever possible. For example, if we need to transfer more than
one packet to the same core, we send them in a batch. More-
over, segregating the code that handles connection packets
from the code that handles regular packets allows us to de-
liver batches of pre-classified packets to these functions. In
the case of the function that processes connection packets,
packets from both local and foreign cores can be placed in
the same batch. This segregation also makes sense from an
NF programmer’s standpoint, as we will see next.

3.4 Programming Model
An NF built using Sprayer must implement two packet-handler
functions. The connection_packets function receives
connection packets and contains logic to deal with opening
or closing connections. As it is guaranteed to receive all con-
nection packets for a given flow, it can store state for this
flow in its local flow table. Later, since the designated core
is deterministic, a regular_packets function from any
core that needs this state knows where to look.

Sprayer abstracts flow state accesses with its flow state
API (Table 2). There are functions to remove or insert state
in the local flow table as well as to retrieve local or global
flow states. Only local states are modifiable. When the NF
calls get_flow with a specific flow id, Sprayer determines
its designated core and retrieves the flow state from its flow
table. Note that the constness of the flow entry returned by
the get_flow function is only lightly enforced, we use
a C pointer to a const variable. Although removing this

2Although this is not possible with commodity hardware, it is an opportunity
for future work (see §7).

Table 2: Flow state API.

Function Description
insert_local_flow(flow_id) Insert flow entry in local table

remove_local_flow(flow_id)
Remove flow entry from local
table

get_local_flow(flow_id)
Retrieve modifiable flow entry
from local table

get_flow(flow_id)
Retrieve unmodifiable flow en-
try from its designated core

constness is possible, it may cause undefined behavior, and
on some situations triggers compiler warnings. Besides the
functions in Table 2, Sprayer has an optimized version of
get_flow for looking up multiple flow states at a time.

Of course, there is much more complexity in program-
ming an NF than flow state access. Our focus here is not in
providing a comprehensive set of tools for NF programming—
others have done it already [27, 31, 36]—instead, we argue
that Sprayer’s flow state abstractions are simple to use and
can be incorporated to other solutions.3

We use a simple implementation of a NAT to demonstrate
how to use Sprayer’s flow state abstractions (Figure 5). For
brevity, we only consider TCP packets, and omit variable
declarations and flow removal logic. Moreover, a real im-
plementation will use batches of packets instead of sepa-
rately handling each. The connection_packets func-
tion, upon receiving the first SYN packet from a TCP con-
nection, selects a port from a global pool (line 10) and uses
insert_local_flow to save this translation in the local
flow table (lines 17–18). Since the designated core is the same
for both sides of the same TCP connection, the NAT can also
store the translation for the other side (lines 24–25). NAT then
treats all the packets that come after (including SYN-ACK)
as regular packets. The regular_packets function only
has to retrieve the translation using get_flow (line 30) and
use it to update the packet header (line 37).

Sprayer API also helps NFs that need to record statistics
but tolerate looser consistency. These NFs can keep statistics
for all flows in every core and periodically aggregate them in
their designated cores—similar to the logging mechanism of
existing systems (e.g., Bro Cluster [43]).

In addition to packet handlers, Sprayer allows NFs to im-
plement an initialization function. Besides initialization work
(e.g., memory allocation), NFs can use this function to set
parameters that Sprayer will use in its own initialization, such
as the size of the flow table and its entries. Stateless NFs can
also set a flag to disable flow state features, i.e., flow tables
and the redirection of connection packets.

4 IMPLEMENTATION
We have implemented Sprayer on top of DPDK [1], taking
advantage of many state-of-the-art optimizations, such as

3Note that legacy NFs may need to be rewritten to use Sprayer.

1 void connection_packets(pkt_t* pkt) {
2 // we only care about the first SYN packet
3 if (!pkt->SYN || pkt->ACK) {
4 regular_packets(pkt);
5 return;
6 }
7 flow_id = get_five_tuple(pkt);
8
9 // select a port from pool

10 translated_flow_id = select_port(flow_id);
11
12 // no port available or invalid source IP
13 if (!translated_flow_id) {
14 drop_packet(pkt);
15 return;
16 }
17 flow_entry = insert_local_flow(flow_id);
18 *flow_entry = translated_flow_id;
19
20 update_header(pkt, translated_flow_id);
21
22 // we also include the other side
23 rev_flow_id = reverse(translated_flow_id);
24 flow_entry=insert_local_flow(rev_flow_id);
25 *flow_entry = reverse(flow_id);
26 }
27
28 void regular_packets(pkt_t* pkt) {
29 flow_id = get_five_tuple(pkt);
30 translated_flow_id = get_flow(flow_id);
31
32 // no translation found for this flow id
33 if (!translated_flow_id) {
34 drop_packet(pkt);
35 return;
36 }
37 update_header(pkt, translated_flow_id);
38 }

Figure 5: Sample implementation of a NAT. Sprayer’s
API functions and packet handlers are in bold.

polling and batching. In order to make the NIC spray pack-
ets we also had to modify DPDK’s ixgbe driver [5]. At
first glance, it may seem impossible to spray packets using
existing commodity NICs, since they do not offer this func-
tionality [24, 25]. We, however, circumvent this limitation
using Flow Director [24], a feature of Intel NICs designed to
associate specific sets of flows to queues. We use Flow Direc-
tor in an unconventional manner: instead of matching flows,
we configure it such that packets are directed to queues using
the checksum field of the TCP header. Since the checksum
field looks random, TCP packets are uniformly distributed
across queues regardless of their flows. In contrast, non-TCP
packets fail to match any rules and fall back to traditional
RSS, in which the NIC directs packets to cores using a hash
of the five-tuple. All non-TCP packets are processed in the
core they arrive, with no need for redirection.

A major problem with Flow Director—and the reason many
choose not to use it [20, 30]—is that it has a somewhat limited
space for flow rules (8k). We avoid this problem using only a
certain number of least significant bits of the checksum field,
depending on the number of cores in the system. This allow
us to define rules that exhaust all possible matches.

0 5000 10000
Processing Cycles Per Packet

0

5

10

P
ro

ce
ss

in
g

R
at

e
(M

pp
s)

RSS
Sprayer

(a) Processing rate.

0 5000 10000
Processing Cycles Per Packet

2.5

5.0

7.5

10.0

Th
ro

ug
hp

ut
(G

bp
s)

RSS
Sprayer

(b) TCP throughput.

Figure 6: Effect of increasing the number of processing
cycles per packet on processing rate (with 64 B packets)
and TCP throughput, while using a single flow.

5 EVALUATION
This section presents a preliminary evaluation of Sprayer. We
run experiments on a testbed with two servers connected back-
to-back. One server functions as a traffic generator and the
other as a middlebox. The middlebox server is equipped with
two Intel Xeon E5-2650 CPUs, each of which has 8 cores
with 2.0 GHz clock, and 256 GB of RAM (equally divided
among all memory channels). The traffic-generator server is
equipped with a single Intel Core i7-7700 CPU and 32 GB of
RAM. Moreover, both servers have an Intel 82599ES 10 GbE
NIC [24] and run Linux 4.9.0-5. We configure the RSS hash
function to direct upstream and downstream flows from the
same connection to the same core [44].

To systematically emulate NFs with different complexities,
we implement a simple NF on top of Sprayer. This NF cre-
ates a new entry in the flow table at every new connection.
Moreover, for every packet it receives, it retrieves the flow
state, modifies the header, and busy loops for a given number
of cycles. We vary the number of cycles from 0 up to 10,000
(the maximum number of cycles per packet among the NFs
surveyed by [42]). The NF uses 8 cores in all experiments.

When measuring processing rate, we use MoonGen [16] to
generate 64 B TCP packets with variable payload content, and
therefore variable checksum. When measuring TCP through-
put, we use Iperf3 [4] to create real TCP connections. Our
results use the standard Linux TCP implementation (CUBIC),
without any kind of tuning. Unless otherwise noted, error bars
represent one standard deviation.
How much can Sprayer improve performance? The max-
imum improvement caused by Sprayer happens when there
is a single flow. Figure 6(a) shows the processing rate as a
function of per-packet processing cycles for a single flow. As
expected, when we increase the number of cycles spent on
each packet, the processing rate decreases. Somewhat unex-
pectedly though, Sprayer’s processing rate is limited to about
10 Mpps. This, however, is not fundamental and is a limitation
of the 82599 NIC when using Flow Director. For less trivial
NFs, the fact that Sprayer uses all cores allows it to process
significantly more packets than RSS. Since Sprayer may re-
order packets, improving processing rate does not necessarily

100 101 102

Number of Flows

0.5

1.0

1.5

P
ro

ce
ss

in
g

R
at

e
(M

pp
s)

RSS
Sprayer

(a) Processing rate.

100 101 102

Number of Flows

2.5

5.0

7.5

10.0

Th
ro

ug
hp

ut
(G

bp
s)

RSS
Sprayer

(b) TCP throughput.

Figure 7: Effect of increasing the number of flows on
processing rate (with 64 B packets) and TCP throughput.
Processing cycles per packet remain fixed at 10,000.

0 5000 10000
Processing Cycles Per Packet

10

15

20

La
te

nc
y

(µ
s)

RSS
Sprayer

Figure 8: 99th percentile
RTT for 64 B packets at
70% load for a single flow.

100 101 102

Number of Flows

0.7

0.8

0.9

1.0

Ja
in

’s
Fa

irn
es

s
In

de
x

RSS
Sprayer

Figure 9: Jain’s fairness
index for increasing num-
ber of flows.

improve TCP throughput. Figure 6(b) alleviates this concern
by measuring the throughput of a real TCP connection.
How does the number of flows impact Sprayer? The per-
formance of Sprayer is consistent regardless of the number
of concurrent flows. We repeat the same experiments fixing
the number of processing cycles per packet in 10,000 while
increasing the number of flows. Sources and destinations
change randomly at every execution. Figure 7 compares the
processing rate and TCP throughput of RSS and Sprayer, for
an increasing number of concurrent flows. We find that RSS
shows considerably worse throughput for a small number of
flows and a slightly better throughput for a sufficiently large
number of flows. Since the processing rate between the two is
similar for a large number of flows, we attribute the difference
in TCP throughput to packet reordering. Furthermore, if we
consider the small number of concurrent flows in a typical
workload (Figure 2), Sprayer is faster most of the time.
Does Sprayer impact latency? Since Sprayer spreads pack-
ets from the same flow across all cores, packets from the same
flow are processed in parallel. This ends up reducing latency.
Figure 8 compares the 99th percentile round trip time when
using RSS and Sprayer to process 64 B packets from a single
flow at 70% of the minimal processing rate.
Does Sprayer impact fairness? Sprayer eliminates the fair-
ness problem caused by hash collisions. Since all flows get to
share all cores equally, they all receive the same share. Fig-
ure 9 reports the average Jain’s fairness index [26] across all
runs. Error bars represent the minimum and maximum obser-
vations. While Sprayer consistently achieves fair throughput

(Jain’s index close to 1.0), RSS’s fairness depends on the
number of flows each core has to process.
Summary. Our experiments indicate that spraying packets
across cores is a valid approach for software middleboxes. It
improves fairness and provides consistent performance, re-
gardless of the number of flows. What remains to be answered
is how well Sprayer interacts with other TCP implementations.
Moreover, although the NF used in our experiments operates
similarly to a real NF,4 we plan to extend our evaluation to
real NFs implemented on top of Sprayer.

6 RELATED WORK
As already mentioned, there are multiple works that use
packet spraying to improve both efficiency and fairness in
datacenter networks [11, 13, 15, 21, 47]. Yet, Sprayer is the
first to bring this concept to software middleboxes. Although
the basic idea is similar, the implications are different. One
of the challenges of using packet spraying in datacenters is to
ensure that it keeps working in the presence of asymmetries
caused by link failures. In middleboxes, this problem does
not exist. Instead, flow state sharing is the main concern.

Many previous works have also investigated NF state so
as to scale NFs to multiple hosts [18, 28, 35, 37, 45]. De-
spite these solutions being orthogonal to our work, they have
identified similar flow-state-access patterns as we did. More-
over, one of these solutions, StatelessNF [28], moves all NF
state (per-flow and global) to a remote server, which is an
elegant approach to simplifying scalability and failure recov-
ery. Although StatelessNF could potentially replace Sprayer’s
flow state abstractions, it requires non-commodity technol-
ogy (InfiniBand). Moreover, accessing remote states increases
latency and requires extra CPU cycles [45].

Some attempts have also been made to improve middlebox
efficiency when packets need to go through multiple NFs (NF
chaining). NFP [41] and ParaBox [48] explore parallelism
by processing the same packet in NFs located in different
cores at the same time. These solutions, however, are specific
to NF chaining and can only work for some configurations.
Moreover, they require at least two inter-core transfers for
every packet. Also related to NF chaining, NFVnice [32]
improves fairness among NFs running on the same core, but
makes no effort to improve fairness among flows.

Finally, mOS [27] has focused on creating abstractions for
stateful flow processing. It keeps track of TCP state machines
and let NFs implement handlers, which are triggered in the
presence of events (e.g., new TCP connection). This is com-
plementary to Sprayer’s flow state abstractions, that facilitate
flow state access in the presence of packet spraying.

7 DISCUSSION AND FUTURE WORK
We now point to Sprayer’s limitations and outline questions
that should be further investigated.

4Our NF does a flow-state lookup, updates the header, and busy-loops for
a certain number of cycles. A firewall, for example, would lookup the flow
state and go through an ACL.

NF deployability: Sprayer’s programming model can be
used to implement NFs that do not need to update flow state
in the middle of a flow (e.g., NAT, firewall, load balancer,
traffic monitor). However, not every NF fits this model. Some
NFs that perform DPI, for example, need to support cross-
packet pattern matching. Although they can be made to work
with out-of-order packets [46], implementing them on top of
Sprayer would require that cores share their state machines.
Another example of NFs incompatible with Sprayer are trans-
parent web proxies and caches. The reason being that an
HTTP request may be split among different TCP packets and
end up going to different cores. Since transparent proxies are
incompatible with HTTPS—which now accounts for more
than 70% of loaded web pages [3, 6]—we do not see this as a
major drawback.
Programmable NICs: We constrained our design to work
on commodity hardware. However, the rise of programmable
NICs [8, 12, 17] creates further opportunities. We could pro-
gram NICs to direct connection packets to designated cores,
reducing some of Sprayer’s overhead. Also, inspired by pre-
vious work on datacenter networks [10, 22, 29], we may con-
figure NICs to direct packets to cores using flowlets. Which
can bring advantages, such as reduced packet reordering.
Scalability with more cores: Although an increase in the
number of CPU cores should increase Sprayer’s advantage
over RSS, it also has the potential to increase packet reorder-
ing. Therefore, it may be wise to only spray packets from a
particular flow to a limited subset of cores [34]. We intend to
test this hypothesis in future work using programmable NICs.
Elastic scaling to multiple hosts: In this work we focused
on improving utilization of a single host. In some situations,
however, NFs need to scale to multiple hosts [28, 35, 37,
45]. We can also scale Sprayer to multiple hosts, as long as
packets from the same flow are not sprayed across different
hosts. Moreover, proposals like S6 [45], that advocates using
a Distributed Shared Object (DSO) to share state among hosts,
could also be used to scale Sprayer.
Different transport protocols: At our current implementa-
tion, Sprayer only sprays TCP packets; other packets continue
to be directed to cores using RSS. This avoids the potential
problems packet reordering causes to some UDP applica-
tions (e.g., VoIP [29]). More elaborated classification could
be made to spray only some UDP flows. QUIC [33], for ex-
ample, runs on top of UDP and by design is more resilient to
packet reordering than TCP.

ACKNOWLEDGMENTS
We thank our shepherd Vyas Sekar and the anonymous re-
viewers for their thoughtful feedback. We also thank Amin
Tootoonchian and Shinae Woo for the helpful discussion.
This study was financed in part by the Coordenação de Aper-
feiçoamento de Pessoal de Nível Superior – Brasil (CAPES)
– Finance Code 001, CNPq, FAPERJ, and FAPESP grants
#15/24494-8 and #15/24490-2.

REFERENCES
[1] Data Plane Development Kit. https://dpdk.org
[2] Digital Corpora: M57-Patents Scenario. https://digitalcorpora.org/

corpora/scenarios/m57-patents-scenario
[3] HTTPS encryption on the web. Retrieved Jul. 2, 2018 from https:

//transparencyreport.google.com/https/
[4] iperf3. https://software.es.net/iperf/
[5] IXGBE Driver. https://doc.dpdk.org/guides/nics/ixgbe.html
[6] Let’s Encrypt Stats. Retrieved Jul. 2, 2018 from https://letsencrypt.

org/stats/
[7] MAWI Working Group Traffic Archive: samplepoint-F. http:

//mawi.wide.ad.jp/mawi/
[8] NetFPGA. https://netfpga.org/
[9] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan,

Nelson Huang, and Amin Vahdat. 2010. Hedera: Dynamic Flow Sched-
uling for Data Center Networks. In NSDI.

[10] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan
Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis Ma-
tus, Rong Pan, Navindra Yadav, and George Varghese. 2014. CONGA:
Distributed Congestion-aware Load Balancing for Datacenters. In SIG-
COMM.

[11] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick
McKeown, Balaji Prabhakar, and Scott Shenker. 2013. pFabric: Mini-
mal Near-optimal Datacenter Transport. In SIGCOMM.

[12] Mina Tahmasbi Arashloo, Monia Ghobadi, Jennifer Rexford, and David
Walker. 2017. HotCocoa: Hardware Congestion Control Abstractions.
In HotNets.

[13] Jiaxin Cao, Rui Xia, Pengkun Yang, Chuanxiong Guo, Guohan Lu,
Lihua Yuan, Yixin Zheng, Haitao Wu, Yongqiang Xiong, and Dave
Maltz. 2013. Per-packet Load-balanced, Low-latency Routing for Clos-
based Data Center Networks. In CoNEXT.

[14] Margaret Chiosi et al. 2012. Network Functions Virtualisation: An In-
troduction, Benefits, Enablers, Challenges & Call for Action. Technical
Report. ETSI.

[15] Advait Dixit, Pawan Prakash, Y. Charlie Hu, and Ramana Rao Kom-
pella. 2013. On the impact of packet spraying in data center networks.
In INFOCOM.

[16] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Florian Wohl-
fart, and Georg Carle. 2015. MoonGen: A Scriptable High-Speed
Packet Generator. In IMC.

[17] Daniel Firestone et al. 2018. Azure Accelerated Networking: Smart-
NICs in the Public Cloud. In NSDI.

[18] Aaron Gember-Jacobson, Raajay Viswanathan, Chaithan Prakash,
Robert Grandl, Junaid Khalid, Sourav Das, and Aditya Akella. 2014.
OpenNF: Enabling Innovation in Network Function Control. In SIG-
COMM.

[19] Liang Guo and Ibrahim Matta. 2001. The war between mice and
elephants. In ICNP.

[20] Sangjin Han, Keon Jang, Aurojit Panda, Shoumik Palkar, Dongsu Han,
and Sylvia Ratnasamy. 2015. SoftNIC: A Software NIC to Augment
Hardware. Technical Report UCB/EECS-2015-155. UC Berkeley.

[21] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu,
Andrew W. Moore, Gianni Antichi, and Marcin Wójcik. 2017. Re-
architecting Datacenter Networks and Stacks for Low Latency and
High Performance. In SIGCOMM.

[22] Keqiang He, Eric Rozner, Kanak Agarwal, Wes Felter, John Carter,
and Aditya Akella. 2015. Presto: Edge-based Load Balancing for Fast
Datacenter Networks. In SIGCOMM.

[23] Jinho Hwang, K. K. Ramakrishnan, and Timothy Wood. 2014. NetVM:
High Performance and Flexible Networking Using Virtualization on
Commodity Platforms. In NSDI.

[24] Intel. 2016. Intel 82599 10 GbE Controller.
[25] Intel. 2018. Intel Ethernet Controller X710/XXV710/XL710.
[26] Rajendra K. Jain, Dah-Ming W. Chiu, and William R. Hawe. 1984.

A Quantitative Measure of Fairness and Discrimination for Resource
Allocation in Shared Computer Systems. Technical Report. DEC.

[27] Muhammad Jamshed, YoungGyoun Moon, Donghwi Kim, Dongsu
Han, and KyoungSoo Park. 2017. mOS: A Reusable Networking Stack
for Flow Monitoring Middleboxes. In NSDI.

[28] Murad Kablan, Azzam Alsudais, Eric Keller, and Franck Le. 2017.
Stateless Network Functions: Breaking the Tight Coupling of State and
Processing. In NSDI.

[29] Srikanth Kandula, Dina Katabi, Shantanu Sinha, and Arthur Berger.
2007. Dynamic Load Balancing Without Packet Reordering. SIG-
COMM CCR 37, 2 (2007).

[30] Georgios P. Katsikas, Tom Barbette, Dejan Kostić, Rebecca Steinert,
and Gerald Q. Maguire Jr. 2018. Metron: NFV Service Chains at the
True Speed of the Underlying Hardware. In NSDI.

[31] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans
Kaashoek. 2000. The Click Modular Router. ACM Trans. Comput. Syst.
18, 3 (2000).

[32] Sameer G. Kulkarni, Wei Zhang, Jinho Hwang, Shriram Rajagopalan,
K. K. Ramakrishnan, Timothy Wood, Mayutan Arumaithurai, and Xi-
aoming Fu. 2017. NFVnice: Dynamic Backpressure and Scheduling
for NFV Service Chains. In SIGCOMM.

[33] Adam Langley et al. 2017. The QUIC Transport Protocol: Design and
Internet-Scale Deployment. In SIGCOMM.

[34] M. Mitzenmacher. 2001. The power of two choices in randomized load
balancing. IEEE Trans. on Parallel and Distrib. Syst. 12, 10 (2001).

[35] Shoumik Palkar, Chang Lan, Sangjin Han, Keon Jang, Aurojit Panda,
Sylvia Ratnasamy, Luigi Rizzo, and Scott Shenker. 2015. E2: A Frame-
work for NFV Applications. In SOSP.

[36] Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls, Sylvia Rat-
nasamy, and Scott Shenker. 2016. NetBricks: Taking the V out of NFV.
In OSDI.

[37] Shriram Rajagopalan, Dan Williams, Hani Jamjoom, and Andrew
Warfield. 2013. Split/Merge: System Support for Elastic Execution in
Virtual Middleboxes. In NSDI.

[38] Vyas Sekar, Norbert Egi, Sylvia Ratnasamy, Michael K. Reiter, and
Guangyu Shi. 2012. Design and Implementation of a Consolidated
Middlebox Architecture. In NSDI.

[39] Justine Sherry, Peter Xiang Gao, Soumya Basu, Aurojit Panda, Arvind
Krishnamurthy, Christian Maciocco, Maziar Manesh, João Martins,
Sylvia Ratnasamy, Luigi Rizzo, and Scott Shenker. 2015. Rollback-
Recovery for Middleboxes. In SIGCOMM.

[40] Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krishnamurthy,
Sylvia Ratnasamy, and Vyas Sekar. 2012. Making Middleboxes Some-
one Else’s Problem: Network Processing as a Cloud Service. In SIG-
COMM.

[41] Chen Sun, Jun Bi, Zhilong Zheng, Heng Yu, and Hongxin Hu. 2017.
NFP: Enabling Network Function Parallelism in NFV. In SIGCOMM.

[42] Amin Tootoonchian, Aurojit Panda, Chang Lan, Melvin Walls, Katerina
Argyraki, Sylvia Ratnasamy, and Scott Shenker. 2018. ResQ: Enabling
SLOs in Network Function Virtualization. In NSDI.

[43] Matthias Vallentin, Robin Sommer, Jason Lee, Craig Leres, Vern Pax-
son, and Brian Tierney. 2007. The NIDS Cluster: Scalable, Stateful
Network Intrusion Detection on Commodity Hardware. In RAID.

[44] Shinae Woo, Eunyoung Jeong, Shinjo Park, Jongmin Lee, Sunghwan
Ihm, and KyoungSoo Park. 2013. Comparison of Caching Strategies in
Modern Cellular Backhaul Networks. In MobiSys.

[45] Shinae Woo, Justine Sherry, Sangjin Han, Sue Moon, Sylvia Ratnasamy,
and Scott Shenker. 2018. Elastic Scaling of Stateful Network Functions.
In NSDI.

[46] Xiaodong Yu, Wu-chun Feng, Danfeng Yao, and Michela Becchi. 2016.
O3FA: A Scalable Finite Automata-based Pattern-Matching Engine for
Out-of-Order Deep Packet Inspection. In ANCS.

[47] Hong Zhang, Junxue Zhang, Wei Bai, Kai Chen, and Mosharaf Chowd-
hury. 2017. Resilient Datacenter Load Balancing in the Wild. In SIG-
COMM.

[48] Yang Zhang, Bilal Anwer, Vijay Gopalakrishnan, Bo Han, Joshua
Reich, Aman Shaikh, and Zhi-Li Zhang. 2017. ParaBox: Exploiting
Parallelism for Virtual Network Functions in Service Chaining. In
SOSR.

https://dpdk.org
https://digitalcorpora.org/corpora/scenarios/m57-patents-scenario
https://digitalcorpora.org/corpora/scenarios/m57-patents-scenario
https://transparencyreport.google.com/https/
https://transparencyreport.google.com/https/
https://software.es.net/iperf/
https://doc.dpdk.org/guides/nics/ixgbe.html
https://letsencrypt.org/stats/
https://letsencrypt.org/stats/
http://mawi.wide.ad.jp/mawi/
http://mawi.wide.ad.jp/mawi/
https://netfpga.org/

	Abstract
	1 Introduction
	2 Motivation
	3 Design
	3.1 How to spray packets?
	3.2 How to handle flow state?
	3.3 Architecture
	3.4 Programming Model

	4 Implementation
	5 Evaluation
	6 Related Work
	7 Discussion and Future Work
	Acknowledgments
	References

